Article information

Views: 411


Zhuravlev R.A. , Kuban State Technological University , Moskovskaya Str. 2, Krasnodar, 350072, Russian Federation

Tamova M.Y. , Kuban State Technological University , Moskovskaya Str. 2, Krasnodar, 350072, Russian Federation ,

Bugayets N.A. , Kuban State Technological University , Moskovskaya Str. 2, Krasnodar, 350072, Russian Federation

Poznyakovskiy V.M. , South Ural State University (National Research University) , Lenin Ave. 76, Chelyabinsk, 454080, Russian Federation

Penov N.D. , University of Food Technologies , Maritsa Blvd. 26, Plovdiv, 4000, Bulgaria

Year 2017 Issue 1 DOI 10.21179/2308-4057-2017-1-81-89
Annotation Currently, promising innovative direction in the food production technology is the use of techniques of "molecular gastronomy", allowing to modify the consumer properties of traditional foods. One of the techniques of this direction is the technology of "spherification" - the process of encapsulation of various food masses (sauces, juices, extracts, etc.). This technology will allow not only to use it as a tool of innovative management in the restaurant business, but also to expand the field of application of encapsulation in connection with the use of structure-forming agents of domestic production and by-products of the dairy industry. The purpose of the study was to investigate the influence of various factors on the process of encapsulation of food masses: generation of alginate shell when using curd whey as a capsule-forming medium. Methods of instrumental analysis are used in the work. Determination of the qualitative composition and identification of the test ingredients for encapsulation was carried out by IR-Fourier spectrometry. Capsules were prepared by axially feeding into the curd whey of sodium alginate solutions through a device for producing encapsulated products with a fixed size of the nozzle outlets. The results of determining the qualitative composition of the binary system "sodium alginate - curd whey" presumably indicate the complexation of polymers present in the system. It was found that in order to obtain a capsule shape close to a roundly regular one, the concentration of sodium alginate in the encapsulated solution should be between 0.8% and 1.2%. With an increase in the outlet diameter, and also with an increase in the concentration of the structure-forming agent in the encapsulated solution, an increase in the diameter of capsules was observed. The diameter of capsules obtained under the given conditions ranged from 3.7 to 5.7 mm. Generalization of the experiment results served as the basis for developing the technology of encapsulated food products based on the "spherification" method by diffusion of the cross-linking ion (Ca2+) from an external reservoir (curd whey) into a capsular liquid containing sodium alginate. Process conditions for the production of encapsulated food products with specified consumer properties have been established.
Keywords Capsulation, sodium alginate, milk whey, calcium alginate
Artice information Received December 7, 2016
Accepted February 23, 2017
Available online June 29, 2017
Imprint article Zhuravlev R.A., Tamova M.Y., Bugayets N.A., Poznyakovskiy V.M., and Penov N.D. Innovative encapsulation technology of food systems using a by-product of dairy production. Food and Raw Materials, 2017, vol. 5, no. 1, pp. 81-89. doi: 10.21179/2308-4057-2017-1-81-89
Download the full article

1. Vilgis T.A. and Frenzel R. Molekularkiiche - das Kochbuch. Wiesbaden: Auflage, 2007. 208 p.
2. Vilgis T.A. Hydrocolloids between soft matter and taste: Culinary polymer physics. International Journal of Gastronomy and Food Science, 2012, vol. 1, no. 1, pp. 46–53. DOI: 10.1016/j.ijgfs.2011.11.012.
3. Adria F., Soler J., and Adria A. El Bulli 2003–2004. Stuttgart: Hampp Velag, 2006. 656 р.
4. de Vos P., Faas М.М., Spasojevic M., and Sikkema J. Review: Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 2010, vol. 20, no. 4, рp. 292–302. DOI: 10.1016/j.idairyj.2009.11.008.
5. Gaonkar A.G., Vasisht N., Khare A.R. and Sobel R. Microencapsulatuion in the Food Industry: A Practical Implementation Guide. New York: Academic Press,2014. 590 р. DOI: 10.1016/B978-0-12-404568-2.00045-5.
6. Milanovic J., et al. Microencapsulation of Flavors in Carnauba Wax. Sensors, 2010, no. 10, pр. 901–912. DOI: 10.3390/s100100901.
7. Zuidam N.J. and Nedovic V.A. (eds.) Encapsulation Technologies for Active Food Ingredients and Food Processing. New York: Springer-Verlag, 2010, 400 p. DOI 10.1007/978-1-4419-1008-0.
8. Fang Z. and Bhandari B. Encapsulation of polyphenols – a review. Trends in Food Science Technology, 2010, vol. 21, no. 10, рp. 510–523. DOI: 10.1016/j.tifs.2010.08.003.
9. Desai K.G.H. and Park H.J. Recent developments in microencapsulation of food ingredients. Drying Technology, 2005, no. 23, рp. 1361–1394. DOI: 10.1081/DRT-200063478.
10. Nedovich V., Kalusevic A., Manojlovic V., et al. An overview of encapsulation technologies for food applications. Procedia Food Science, 2011, vol. 1, pp. 1806–1815.
11. Voloshin Y., Belaya I., and Krämer R. The encapsulation phenomenon. Basel: Springer International Publ., 2016. 1518 p. DOI: 10/1007/978-3-319-27738-7.
12. Bugayets N.A., Tamova M.Yu., Borovskaya L.V., and Mironova O.P. Issledovanie termodinamicheskikh svoystv belkovo-polisakharidnoy sistemy metodom differentsiruyushchey kalorimetrii [Study of the thermodynamic properties of the protein-polysaccharide system by the method of differentiating calorimetry]. Izvestia vuzov. Pishevaya tekhnologia [News institutes of higher Education. Food technology], 2003, no. 5–6, pp. 112–113.
13. Bugayets N.A., Tamova M.Yu., Prudnikova S.M., and Dzhioev T.E. Issledovanie mezhmolekulyarnogo vzaimodeystviya v belkovo-polisakharidnykh sistemakh metodom yadernoy magnitnoy relaksatsii [Study of intermolecular interactions in protein-polysaccharide systems by nuclear magnetic relaxation]. Izvestia vuzov. Pishevaya tekhnologia [News institutes of higher Education. Food technology], 2004, no. 4, pp. 54–57.
14. Bugayets N.A., Tamova M.Yu., and Bugayets I.A. Vliyanie pH sredy na strukturno-reologicheskie svoystva rastvorov strukturoobrazovateley polisakharidnoy i belkovoy prirody [Effect of pH medium on structural and rheological properties of polysaccharide and protein nature structure forming solutions]. Izvestia vuzov. Pishevaya tekhnologia [News institutes of higher Education. Food technology], 2012, no. 2, pp. 15–18.
15. Kamaruddin M.A., Yusoff M.S., and Aziz H.A. Preparation and Characterization of Alginate Beads by Drop Weight. International Journal of Technology, 2014, vol. 5, no. 2, рp. 121–132. DOI: 10.14716/ijtech.v5i2.409.
16. Mabeau S. and Fleurence J. Seaweed in food products: biochemical and nutritional aspects. Trends in Food Science Technology, 1993, no. 4, pр. 103–107. DOI: 10.1016/0924-2244(93)90091-N.
17. Hunt N.C. and Grover L.M. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters, 2010, vol. 32, no. 6, рp.733–742. DOI: 10.1007/s10529-010-0221-0.
18. Stephen A.M., Phillips O.G., and Williams P.A. Food Polysaccharides and Their Applications Second Edition. NW: Taylor Francis Group, 2006. 712 p.
19. Silva C.M. Alginate microspheres prepared by internal gelation: development and effect on insulin stability. International Journal of Pharmaceutics, 2006, vol. 311, no. 1–2, pp. 1–10. DOI: 10.1016/j.ijpharm.2005.10.050.
20. Phillips G.O. and Williams P.A. (eds.) Handbook of Hydrocolloids. London: Woodhead Publishing, 2009. 948 p.
21. Kaplan D.L. Biopolymers from Renewable Resources. Berlin-New York: Springer-Verlag, 1998. 420 p. DOI 10.1007/978-3-662-03680-8.
22. Hamilton R. and Todoli V. (eds.) Food for Thought: Thought for Food. Barselona-New York: Actar, 2009. 343 р.
23. Lee P. and Rogers M.A. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science. 2011, vol. 1, no. 2, pp. 96–100. DOI: 10.1016/j.ijgfs.2013.06.003.
24. Martinsen A., Skjaak-Braek G., and Smidsroed O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and Bioengineering, 1989, vol. 33, no. 1, рp. 79–89. DOI: 10.1002/bit.260330111.
25. Nussinovitch A. (ed) Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. New York: Springer Science+Business Media, 2010. 303 р. DOI: 10.1007/978-1-4419-6618-6.
26. Burke R., This H., and Kelly A.L. Molecular Gastronomy: An Introduction. Reference Module in Food Science. 2016. DOI: 10.1016/B978-0-08-100596-5.03384-9.
27. Adria F., Soler J., and Adria A. El Bulli 1998-2002. London: Ecco, 2005. 496 р.
28. Draget K.I. and Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids, 2011, vol. 25, pp. 251–256. DOI: 10.1016/j.foodhyd.2009.10.007.
29. Phillips G.O. and Williams P.A. (eds.) Handbook of hydrocolloids Boca Raton [etc.]: CRC Press ; Cambridge : Woodhead Publishing Limited, 1997 (cop.) (Russ.ed.: Kochetkova A.A. and Sarafanova L.A. Spravochnik po gidrokolloidam. St. Petersburg: GIORD Publ., 2006. 536 p.).
30. Adria F., Soler J., and Adria A. A Day at El Bulli: An insight into the ideas, methods and creativity of Ferran Adria. London: Phaidon Press Ltd., 2008. 632 р.
31. Lee P. and Rogers M.A. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science, 2011, vol. 1, no. 2, pp. 96–100. DOI: 10.1016/j.ijgfs.2013.06.003.
32. Augustin M.A. and Oliver C.M. Use of Milk Proteins for Encapsulation of Food Ingredients. Microencapsulation in the Food Industry. A Practical Implementation Guide, 2014, Chapter 19, pp. 211–226.
33. Park Young W., and Haenlein George F.W. (eds.) Milk and dairy products in human nutrition. Rome: FAO, 2013. 376 p. DOI: 10.1002/9781118534168.ch1.
34. Nakanishi K. Infrakrasnye spektry i stroenie organicheskikh soedineniy: Prakticheskoe rukovodstvo [Infrared spectra and the structure of organic compounds: A practical guide]. Moscow: Mir Publ., 1965. 216 p.
35. Fetisova M.A. and Volodin S.S. Koeffitsient formy kak geometricheskaya kharakteristika [Shape factor as a geometric characteristic]. Molodoy uchenyy [Young Scientist], 2011, no. 5, pp. 105–108.

Copyright © 2017, KemIFST. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and statesitslicense. This article is published with open access at